

# Alfa Laval Unique SSV ATEX

### **Finsitzventile**

### Einführung

Das Alfa Laval Unique SSV ATEX Standard ist ein vielseitiges, zuverlässiges pneumatisches Einsitzventil mit einer einzigen Kontaktfläche zwischen Kegel und Sitz, um das Risiko einer Kontamination zu minimieren. Sein kompaktes, modulares und hygienisches Design erfüllt die höchsten Prozessanforderungen in Bezug auf Hygiene und Sicherheit.

Auf Basis der bewährten Unique SSV-Plattform ist es ATEX-zertifiziert, um in Umgebungen mit explosiver Atmosphäre eingesetzt zu werden. Wenige bewegliche Teile sorgen für hohe Zuverlässigkeit und geringe Wartungskosten. Eine große Auswahl an optionalen Funktionen ermöglicht die Anpassung an spezifische Prozessanforderungen.

#### Einsatzbereich

Unique SSV ATEX Standard wurde für eine sichere, unterbrechungsfreie Produktion in Umgebungen mit explosiver Atmosphäre in der Molkerei-, Lebensmittel-, Getränke-, Brauereiindustrie und vielen anderen Branchen entwickelt.

### Vorteile

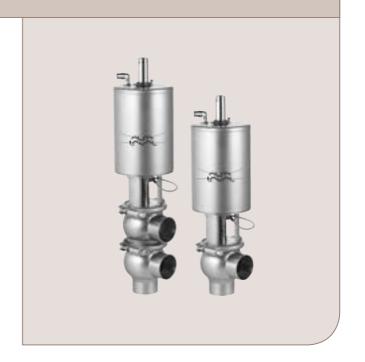
- Äußerst zuverlässig und vielseitig
- Kostengünstiger und modularer Aufbau
- Extrem robust und langlebig
- Schutz vor Leckage und bakterieller Kontamination
- Zertifiziert für den Einsatz nach 3-A, Hygienestandards und ATEX

#### Standardausführung

Die Alfa Laval Unique SSV ATEX-Baureihe ist mit einem, zwei oder drei Gehäusen erhältlich, mit einfach zu konfigurierenden Ventilgehäusen, Kegeln, Dichtungen, Stellantrieben und Klemmringen. Das Ventil kann auch als Absperrventil mit zwei bis vier Arbeitsanschlüssen oder als Umschaltventil mit bis zu sechs Anschlüssen konfiguriert werden.

Um Flexibilität zu gewährleisten, ist der Ventilsitz, der bei der Umschaltversion zwischen den beiden Gehäusen sitzt, für die Montage vorgesehen. Die Ventildichtungen sind durch eine definierte Verpressung auf Haltbarkeit und lange Lebensdauer optimiert. Der Stellantrieb ist über einen Haltebügel mit dem Ventilgehäuse verbunden. Sämtliche Teile werden mit Spannringen zusammengehalten.

Mit dem Alfa Laval Anytime-Konfigurator ist es einfach, das Gerät so anzupassen, dass es praktisch jede Prozessanforderung erfüllt.

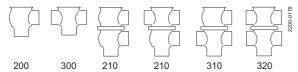

#### Arbeitsprinzip

Das Alfa Laval Unique SSV ATEX Standard ist ein hygienisches pneumatisches Einsitzventil, das mittels Druckluft ferngesteuert wird. Der Stellantrieb sorgt für einen reibungslosen Betrieb und schützt die Prozessleitungen vor Druckspitzen. Das Ventil kann mit einem Alfa Laval ThinkTop® Basic Intrinsically Safe gesteuert werden.

### Zertifikate








### TECHNISCHE DATEN

| Temperatur               |                               |  |
|--------------------------|-------------------------------|--|
| Temperaturbereich:       | -10°C bis +135°C (EPDM)       |  |
| Umgebungstemperatur:     | 10 °C bis +40 °C              |  |
| Druck                    |                               |  |
| Max. Produktdruck:       | 1000 kPa (10 bar)             |  |
| Min. Produktdruck:       | Vakuum                        |  |
| Luftdruck, Stellantrieb: | 500 bis 700 kPa (5 bis 7 bar) |  |
| ATEX                     |                               |  |
| Klassifizierung          | II 2 G D c T4                 |  |

\*Dieses Gerät fällt nicht in den Anwendungsbereich der Richtlinie 2014/34/EU und muss keine separate CE-Kennzeichnung gemäß der Richtlinie tragen, da das Gerät keine eigene Zündquelle hat.

### Ventilgehäusekombinationen



### Funktionsweise des Stellantriebs

- Pneumatische Abwärtsbewegung mit Federrückstellung.
- Pneumatische Aufwärtsbewegung mit Federrückstellung.
- Pneumatische Auf- und Abwärtsbewegung A/A.

#### Physikalische Daten

| Werkstoffe - Ventil/Stellantrieb |                                |  |
|----------------------------------|--------------------------------|--|
| Produktberührte Edelstahlteile:  | 1.4404 (316L)                  |  |
| Sonstige Stahlteile:             | 1.4301 (304)                   |  |
| Oberflächengüte, außen:          | Halbblank (gestrahlt)          |  |
| Oberflächengüte, innen:          | Blank (poliert), Ra < 0,8 µm   |  |
| Produktberührte Dichtungen:      | EPDM                           |  |
| Sonstige Dichtungen:             | NBR                            |  |
| Stellgliedstange:                | PAGG PAGI/GT, MH, 14-250, CF40 |  |
| Feder:                           | Beschichteter Stahl            |  |

### Optionen

- A. Gewindestutzen oder Klemmverbindungen gemäß erforderlicher Norm.
- B. Steuerungs- und Indikatoreinheit: ThinkTop Basic Intrinsically Safe
- C. Produktberührte Dichtungen aus HNBR oder FPM (Hinweis! Temperaturbereich 10 °C bis +135 °C für ATEX-Versionen).
- D. Dichtungen des Ventilkegels aus HNBR oder FPM (Hinweis! Temperaturbereich 10 °C bis +135 °C für ATEX-Versionen).
- E. Oberflächengüte außen blank

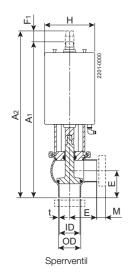
### Hinweis!

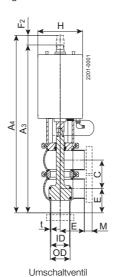
Weitere Informationen finden Sie im Bedienungshandbuch ESE00674.

### Andere Ventile mit gleicher Basisausführung

Die Produktpalette der Unique SSV-Ventile enthält einige für bestimmte Einsatzbereiche entwickelte Ventile. Die folgende Liste zeigt einige verfügbare Modelle. Benutzen Sie aber den Alfa Laval Anytime-Konfigurator, um alle Modelle und Auswahlmöglichkeiten zu sehen.

- Ventil mit umgekehrter Schließrichtung.
- Tankentleerungsventil.
- Tangentialventil.


Halb wartungsfähiger Stellantrieb verfügt über 5 Jahre Garantie.


### Maße (mm)

| Nenngröße            |      |      |      | Rohre |      |       |      |              |       | Rohre        |              |      |
|----------------------|------|------|------|-------|------|-------|------|--------------|-------|--------------|--------------|------|
| Neringrobe           |      |      |      | /AD   |      |       |      |              |       | N            |              |      |
|                      | 25   | 38   | 51   | 63.5  | 76.1 | 101.6 | 25   | 40           | 50    | 65           | 80           | 100  |
| A <sub>1 1)</sub>    | 313  | 314  | 363  | 389   | 422  | 467   | 315  | 315          | 365   | 389          | 427          | 470  |
| A <sub>2 1)</sub>    | 328  | 334  | 388  | 414   | 452  | 497   | 330  | 335          | 390   | 414          | 457          | 500  |
| A <sub>3 1)</sub>    | 360* | 374  | 436  | 475   | 521  | 591   | 367* | 379          | 440.6 | 481          | 534          | 596  |
| A <sub>4 1)</sub>    | 372* | 391  | 458  | 497   | 548  | 618   | 379* | 396          | 463   | 503          | 561          | 623  |
| C                    | 47.8 | 60.8 | 73.8 | 86.3  | 98.9 | 123.6 | 52   | 64           | 76    | 92           | 107          | 126  |
| AD                   | 25   | 38   | 51   | 63.5  | 76.1 | 101.6 | 29   | 41           | 53    | 70           | 85           | 104  |
| <u>ID</u>            | 21.8 | 34.8 | 47.8 | 60.3  | 72.9 | 97.6  | 26   | 38           | 50    | 66           | 81           | 100  |
| <u>t</u>             | 1.6  | 1.6  | 1.6  | 1.6   | 1.6  | 2     | 1.5  | 1.5          | 1.5   | 2            | 2            | 2    |
| <u>E</u>             | 50   | 49.5 | 61   | 81    | 86   | 119   | 50   | 49.5         | 62    | 78           | 87           | 120  |
| _F <sub>1</sub>      | 15   | 20   | 25   | 25    | 30   | 30    | 15   | 20           | 25    | 25           | 30           | 30   |
| _F <sub>2</sub>      | 12*  | 17   | 22   | 22    | 27   | 27    | 12*  | 17           | 22    | 22           | 27           | 27   |
| <u>H</u>             | 85   | 85   | ø115 | ø115  | ø155 | ø155  | 85   | 85           | ø115  | <b>ø</b> 115 | <b>ø</b> 155 | ø155 |
| H (hoher Druck)      | 85   | ø115 | ø155 | ø155  | ø155 | ø155  | 85   | <b>ø</b> 115 | ø155  | ø155         | ø155         | ø155 |
| M (ISO-              |      |      |      |       |      |       |      |              |       |              |              |      |
| Klemmverbindung)     | 21   | 21   | 21   | 21    | 21   | 21    | -    | -            | -     | -            | -            | -    |
| M (DIN-              |      |      |      |       |      |       |      |              |       |              |              |      |
| Klemmverbindung)     | -    | -    | -    | -     | -    | -     | 21   | 21           | 21    | 28           | 28           | 28   |
| M (DIN-Gewindestück) | -    | -    | _    | -     | _    | -     | 22   | 22           | 23    | 25           | 25           | 30   |
| M (SMS-              |      |      |      |       |      |       |      |              |       | -            | -            |      |
| Gewindestück)        | 20   | 20   | 20   | 24    | 24   | 35    | -    | -            | -     | -            | -            | -    |
| Gewicht (kg)         |      |      |      |       |      |       |      |              |       |              |              |      |
| Sperrventil          | 3.1  | 3.3  | 5.5  | 6.5   | 11.3 | 13.6  | 3.2  | 3.4          | 5.5   | 6.6          | 11.8         | 13.6 |
| Umschaltventil       | 3.9  | 4.2  | 7.1  | 8.5   | 14   | 18    | 4.1  | 4.5          | 7.2   | 8.8          | 14.9         | 17.9 |

 $<sup>^{\</sup>star}$  = nur für austauschbare Elastomer-Ventilkegeldichtung.

 $_{1)}$  Exakte  $A_1$  -  $A_4$  Abmessungen siehe Angaben im Anytime-Konfigurator.

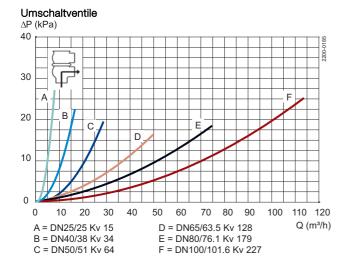


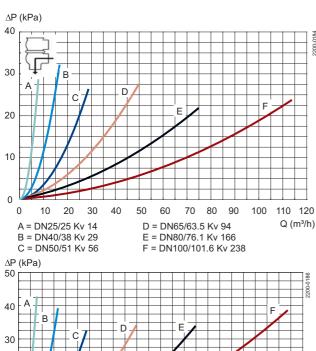


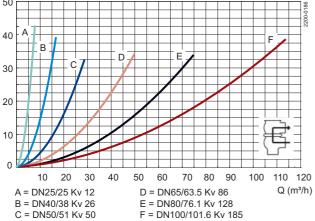
### Bitte beachten!

## Öffnungs- und Schließzeiten werden von folgenden

### Faktoren beeinflusst:


- Druck der Druckluftversorgung
- Länge und Durchmesser der Luftschläuche.
- Anzahl der Ventile, die am selben Luftschlauch angeschlossen sind.
- Verwendung eines einzelnen Magnetventils für in Reihe angeschlossene Luft-Antriebe.
- Produktdruck.


### Druckluftanschlüsse


R 1/8 Zoll (BSP), Innengewinde.

|           | Luftverbrauch (Liter No | malluft) pro Hub      |                       |  |  |
|-----------|-------------------------|-----------------------|-----------------------|--|--|
| Größe     | DN25-40                 | DN50-65               | DN80100               |  |  |
|           | DN/AD 25-38 mm          | DN/AD 51-63,5 mm      | DN/AD 76,1-101,6 mm   |  |  |
| NO und NC | 0,2 × Luftdruck [bar]   | 0,5 × Luftdruck [bar] | 1,3 × Luftdruck [bar] |  |  |
| A/A       | 0.5 × Luftdruck [bar]   | 1.1 × Luftdruck [bar] | 2.7 × Luftdruck [bar] |  |  |

### Druckabfall-/Leistungsdiagramme







### Hinweis!

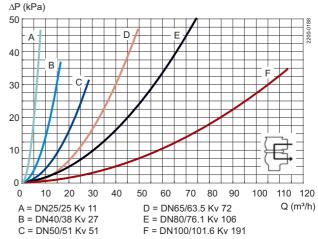
Für das Diagramm gilt Folgendes:

Medium: Wasser (20°C). Messung: Gemäß VDI2173

Druckabfall lässt sich auch im Anytime-Konfigurator berechnen

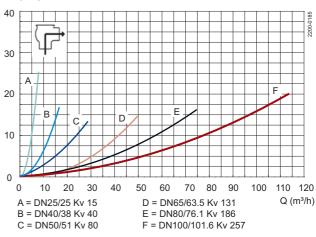
Der Druckabfall lässt sich auch mit der folgenden Formel berechnen:

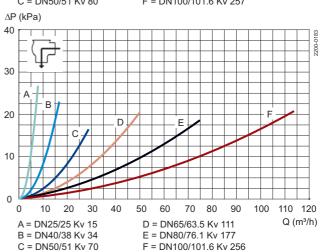
 $Q = Kv \times \sqrt{\Delta p}$ 


Wobe

Q = Volumenstrom in m<sup>3</sup>/h.

 $Kv = m^3/h$  bei einem Druckabfall von 1 bar (siehe obige Tabelle).


 $\Delta$  p = Druckabfall in bar über dem Ventil.


### Umschaltventile

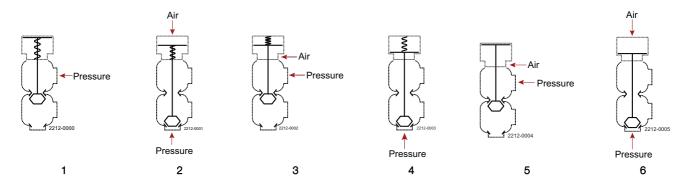


### Absperrventile

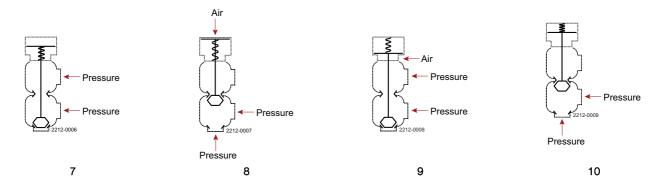
ΔP (kPa)






Berechnung des Druckabfalls für ein ISO 2,5-Zoll-Absperrventil bei einem Volumenstrom von 40 m $^3$ /h 2,5-Zoll-Absperrventil, wobei Kv = 111 (siehe obige Tabelle).

$$Q = Kv \times \sqrt{\Delta p}$$
$$40 = 111 \times \sqrt{\Delta p}$$


$$\Delta p = \left(\frac{40}{111}\right)^2 = 0.13 \text{ bar}$$

(Dies ist etwa derselbe Druckabfall wie in Y-Achse oben ablesbar.)

### Druckdaten für Unique Single Seat ATEX-Ventile



| Tabelle 1 - Absperr- und Umsch |       |              | Max            | x. Druck (bar) | ohne Leckage  | am Ventilsitz  |                |                 |  |
|--------------------------------|-------|--------------|----------------|----------------|---------------|----------------|----------------|-----------------|--|
| Stellantrieb /-Ventilgehäuse-  | Luft  | Stellung -   | Ventilgröße    |                |               |                |                |                 |  |
| Kombination und                | druck | des          | DN 25<br>DN/AD | DN 40<br>DN/AD | DN50<br>DN/AD | DN 65<br>DN/AD | DN 80<br>DN/AD | DN 100<br>DN/AD |  |
| Druckrichtung                  | (bar) | Ventilkegels | 25 mm          | 38 mm          | 51 mm         | 63,5 mm        | 76,1 mm        | 101,6 mm        |  |
| 1                              |       | NO           | 10.0           | 8.2            | 8.4           | 4.5            | 6.8            | 4.4             |  |
| _                              | 5     |              | 9.2            | 4.4            | 5.9           | 3.4            | 4.4            | 2.9             |  |
| 2                              | 6     | NO           | 10.0           | 7.6            | 9.6           | 5.6            | 7.2            | 4.8             |  |
|                                | 7     |              | 10.0           | 10.0           | 10.0          | 7.8            | 10.0           | 6.7             |  |
| _                              | 5     |              | 10.0           | 5.7            | 6.8           | 3.7            | 4.7            | 3.0             |  |
| 3 _                            | 6     | NG           | 10.0           | 9.8            | 10.0          | 6.1            | 7.7            | 5.0             |  |
|                                | 7     |              | 10.0           | 10.0           | 10.0          | 8.5            | 10.0           | 6.9             |  |
| 4                              |       | NG           | 10.0           | 6.3            | 7.2           | 4.2            | 6.4            | 4.2             |  |
| _                              | 5     |              | 10.0           | 10.0           | 10.0          | 10.0           | 10.0           | 9.4             |  |
| 5_                             | 6     | A/A          | 10.0           | 10.0           | 10.0          | 10.0           | 10.0           | 10.0            |  |
| _                              | 7     |              | 10.0           | 10.0           | 10.0          | 10.0           | 10.0           | 10.0            |  |
| ·                              | 5     |              | 10.0           | 10.0           | 10.0          | 10.0           | 10.0           | 9.1             |  |
| 6                              | 6     | A/A          | 10.0           | 10.0           | 10.0          | 10.0           | 10.0           | 10.0            |  |
|                                | 7     |              | 10.0           | 10.0           | 10.0          | 10.0           | 10.0           | 10.0            |  |



| Tabelle 2 - Absperr- und Umsch | naltventile |              |             |       | Max. Druck | in bar, gegen | den das Venti | l öffnen kann. |  |
|--------------------------------|-------------|--------------|-------------|-------|------------|---------------|---------------|----------------|--|
| Stellantrieb /-Ventilgehäuse-  | Luft        | Stellung -   | Ventilgröße |       |            |               |               |                |  |
| Kombination und                | druck       | des          | DN 25       | DN 40 | DN50       | DN 65         | DN 80         | DN 100         |  |
|                                |             |              | DN/AD       | DN/AD | DN/AD      | DN/AD         | DN/AD         | DN/AD          |  |
| Druckrichtung                  | (bar)       | Ventilkegels | 25 mm       | 38 mm | 51 mm      | 63,5 mm       | 76,1 mm       | 101,6 mm       |  |
| 7                              |             | NO           | 10.0        | 10.0  | 10.0       | 7.4           | 9.7           | 6.3            |  |
| _                              | 5           |              | 10.0        | 7.8   | 10.0       | 6.1           | 7.1           | 4.7            |  |
| 8                              | 6           | NO           | 10.0        | 10.0  | 10.0       | 8.3           | 9.9           | 6.6            |  |
| _                              | 7           |              | 10.0        | 10.0  | 10.0       | 10.0          | 10.0          | 8.5            |  |
| _                              | 5           |              | 10.0        | 10.0  | 6.8        | 6.6           | 7.5           | 4.9            |  |
| 9 _                            | 6           | NG           | 10.0        | 10.0  | 10.0       | 9.0           | 10.0          | 6.9            |  |
|                                | 7           |              | 10.0        | 10.0  | 10.0       | 10.0          | 10.0          | 8.8            |  |
| 10                             |             | NG           | 10.0        | 9.7   | 10.0       | 6.8           | 9.1           | 6.1            |  |

| m           |
|-------------|
| ⋖           |
| te          |
| ā           |
| 0           |
| orp         |
| ŏ           |
| <u>_</u>    |
| $\geq$      |
| ٣           |
| Ŋ           |
| ā           |
|             |
| 9           |
| Φ           |
| ž           |
| <u>a</u>    |
| 9           |
| Č           |
| de          |
| fra         |
| D           |
| ng          |
| Ē.          |
| ne          |
| <u>=</u> .  |
| <u>_</u>    |
| . <u>es</u> |
| 4           |
| $\geq$      |
| 5           |
| 7           |
| Ĥ,          |
| 7           |
| _           |

Die hier enthaltenen Informationen sind korrekt zum Zeitpunkt der Veröffentlichung; geringfügige Änderungen jedoch vorbehalten.

### Wie nehme ich Kontakt zu Alfa Laval auf?