

Alfa Laval MultiJet 40

Drehstrahlkopf zur hochwirksamen Tankreinigung für den industriellen Einsatz

Einführung

Alfa Laval MultiJet 40 ist eine Tankreinigungsmaschine mit Drehstrahlkopf für den Einsatz in industriellen Umgebungen. Sie wurde für die Reinigung von Tanks mit einem Fassungsvermögen von 50 und 500 m³ entwickelt und kombiniert Druck und Durchfluss, um hochwirksame Reinigungsstrahlen zu erzeugen, die in einem wiederholbaren und zuverlässigen 360-Grad-Reinigungsmuster rotioren.

MultiJet 40 minimiert den Verbrauch von Wasser und Reinigungsmedien. Die einfache Anpassung an Kundenwünsche ermöglicht es Unternehmen, weniger Zeit für die Reinigung und mehr Zeit für die Produktion aufzubringen.

Einsatzbereich

Alfa Laval MultiJet 40 wurde für die Entfernung der härtesten Rückstände aus Industrietanks in einer Vielzahl von Branchen entwickelt, z. B. in den Bereichen Haushaltspflege-, Chemie-, Zellstoff- und Papier-, Ethanol-, Stärke-, Öl- und Transportindustrie.

Vorteile

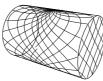
- 60 % schnellere Reinigung = mehr Zeit für die Produktion
- Spart bis zu 70 % Ihrer Reinigungskosten
- Eliminiert die Notwendigkeit des Zugangs zu engen Räumen für die manuelle Tankreinigung
- Hochwirksame Reinigung in einem wiederholbaren 360°-Reinigungsmuster
- Reinigungsprozess kann mit Alfa Laval Rotacheck validiert werden

Standardausführung

Die Durchmesser der Düsen können an individuelle Anforderungen angepasst werden. Dadurch lässt sich sowohl die Strahllänge als auch der Durchsatz optimieren und an das gewünschte Druckniveau anpassen. Ein 2.1-Werkstoffzertifikat und eine ATEX-Zertifizierung sind vorhanden.

Alfa Laval bietet eine breite Palette von Tankreinigungsmaschinen an, die für verschiedene Aufgaben und Branchen geeignet sind. Eine Alternative, die eine ähnliche Leistung wie Alfa Laval MultiJet 40 bietet, ist Alfa Laval GJ 8 für Anwendungen, die eine kleine Tankeinlassöffnung erfordern.

In den obenstehenden Abbildungen ist der Reinigungsverlauf in einem zylindrischen, liegenden Tank dargestellt. Nach dem ersten Durchgang ist die Flüssigkeit nur grob verteilt. Durch zusätzliche Reinigungszyklen entsteht dann das in der zweiten Abbildung dargestellte, dichtere Reinigungsmuster.


Arbeitsprinzip

Der hochwirksame Strahl des Alfa Laval MultiJet 40 Drehstrahlkopfs bedeckt die gesamte Oberfläche des Tankinnenraums in einem sukzessive dichter werdenden Muster. Dadurch wird eine starke mechanische Wirkung mit einem geringen Volumen an Wasser und Reinigungsmedien erreicht.

Durch den Druck der Reinigungsflüssigkeit rotieren die Düsen um ihre vertikalen und horizontalen Achsen. Im ersten Zyklus wird die Flüssigkeit von den Düsen grob auf der Tankinnenwand verteilt. In den folgenden Zyklen wird das Muster allmählich dichter, bis ein vollständiges Reinigungsmuster erreicht ist.

Wenn das vollständige Reinigungsmuster erreicht ist, beginnt das Gerät von vorn und führt das nächste vollständige Reinigungsmuster durch.

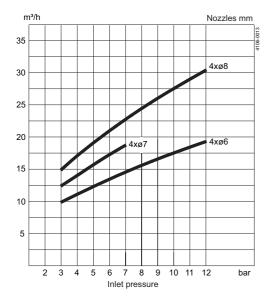
Zertifikate

2.1 Werkstoffzertifikat und ATEX.

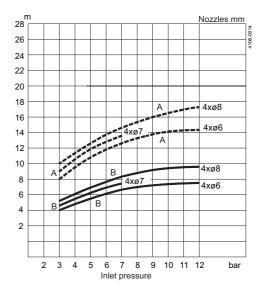
TECHNISCHE DATEN

Schmiermittel:	Selbstschmierung durch Reinigungsflüssigkeit
Max. Reichweite:	8 - 17 m
Strahlreichweite:	4 - 10 m
Druck	
Betriebsdruck:	3 - 12 bar_
Empfohlener Druck:	5 - 6,5 bar

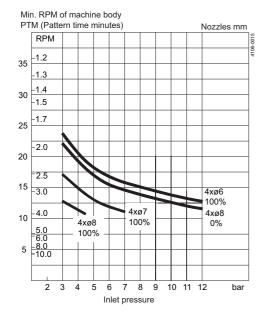
Physikalische Daten

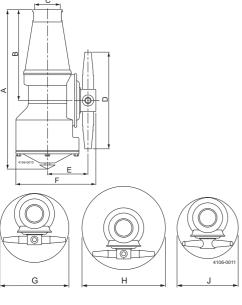

Materialien		
316L (UNS S31603), PTFE, PEEK, ETFE, FPM, TF	Л	

Oberflächengüte	
Oberflächengüte, außen:	Glasperlgestrahlt
Temperatur	
Max. Betriebstemperatur:	95 °C
Max. Umgebungstemperatur:	140 °C
Gewicht:	6,1 kg
Anschlüsse	
Standard-Innengewinde:	1½" Rp (BSP) oder 1½" NPT


Vorsicht

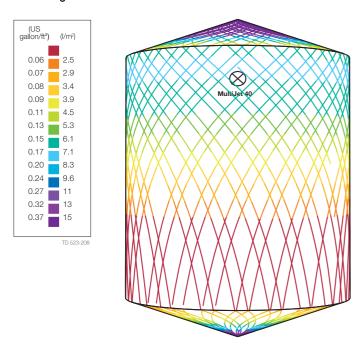
Vermeiden Sie hydraulische Druckstöße, feste und abrasive Partikel in der Reinigungsflüssigkeit, da diese zu erhöhtem Verschleiß und/oder Schäden der inneren Mechanismen führen können. Es ist empfehlenswert, in der Versorgungsleitung einen Filter zu installieren. Nicht zur Gasabsaugung oder Luftverteilung verwenden. Weitere Informationen zur Dampfreinigung finden Sie im Handbuch.


Durchsatz

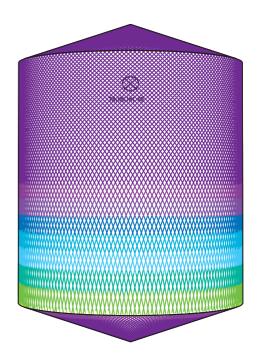

Strahlreichweite

Reinigungszeit, Vollständige Abdeckung

Abmessungen


	Α	В	С	D	E	F	G	Н	J
mm	297	170	1½" BSP oder 1½"	204	78	152	ø 216	ø 264	ø180
			NPT						

TRAX Simulations-Tool


Die einzigartige Software TRAX simuliert das Verhalten des Toftejorg MultiJet 40 in einem speziellen Tank oder Kessel. Die Simulation liefert Informationen über die Benetzungsintensität, Gitterbreite des Musters und Geschwindigkeit des Reinigungsstrahls. Diese Informationen werden genutzt, um die bestmögliche Position des Tankreinigungsgeräts zu bestimmen und die richtige Kombination aus Durchfluss, Zeit und Druck zu realisieren.

Die TRAX-Demo enthält verschiedene Reinigungssimulationen, die eine Vielzahl von Anwendungen abdecken und als Referenz und Dokumentation für Tankreinigungen genutzt werden können. Eine TRAX-Simulation ist auf Anfrage kostenlos erhältlich.

Benetzungsintensität

T 5 m, H 6 m, Toftejorg MultiJet 40, 4 x ø6 mm, 100 % Zeit = 18,2 Min., Wasserverbrauch = 3760 l

\mathbf{m}
7
_
Φ
主
ਯ
=
0
Ω.
$\overline{}$
\sim
\cup
_
g
>
Ø
Ĭ
-
m.
₩
◁
4
\Box
ō
5
Φ
\times
눈
<u>_</u>
\leq
(1)
Ċ
ā
ŏ
ĕ
-
Φ
O
- 75
Φ
Φ
ŭ
Φ
-
S
$_{\perp}$
7
~
~
⋖
\Box
_
⋖
ΠÌ
$\overline{}$
=
⋖

Die hier enthaltenen Informationen sind korrekt zum Zeitpunkt der Veröffentlichung; geringfügige Änderungen jedoch vorbehalten.

Wie nehme ich Kontakt zu Alfa Laval auf?